quinta-feira, 11 de junho de 2015

Upper Extremity Orthoses Use in Amyotrophic Lateral Sclerosis/Motor Neuron Disease: A Systematic Review
Cynthia Clare Ivy*, Susan M Smith and Miranda M Materi
Mayo Clinic Arizona, Scottsdale, Arizona, USA

Abstract 

Background: Orthoses decrease the effects of muscle imbalance, provide greater ease in performance of activities of daily living, prevent joint contracture, and relieve pain. There are no published systematic reviews on the use of upper extremity (UE) orthoses in amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND).

Objective: The aim of this systematic review is to determine common orthosis interventions for ALS/MND.

Methods: The authors performed a systematic review of the literature available on Medline, EMBASE, Google Scholar, PubMed, the Cochrane Database of Systematic Reviews, and CINAHL. Key words used: 1) ALS, amyotrophic lateral sclerosis, Lou Gehrig’s disease, MND, motor neuron disease; 2) OT, occupational therapy, hand therapy, PT, physical therapy; 3) splint, brace, orthosis, orthoses, orthotic, orthotic device. Three reviewers critically appraised 22 articles using a standard format.

Results: The reviewers identified no randomized controlled or controlled clinical trials, five level 4 (case reports) and seventeen level 5 (expert opinions) using Sackett’s original 5 level pyramid.

Conclusions: Patients with ALS demonstrated improved function, increased range of motion and decreased pain with orthoses. However, there were few studies that met the search criteria. Furthermore, the studies that were reviewed had limited subjects, making it difficult to draw definitive conclusions. Further research is needed to determine appropriate study designs. for the use of upper extremity orthoses in ALS/MND. Prospective studies would strengthen the results.

Keywords

ALS; Motor neuron disease; Occupational therapy; Physical therapy; Splint; brace; Orthotic device

Introduction

This article presents a review of published accounts on the use of orthoses that are helpful to persons with Amyotrophic Lateral Sclerosis (ALS) and other Motor Neuron Diseases (MNDs). The authors used the structured review technique of a systematic review [1]. “There are five steps involved in conducting a systematic review:

•Framing questions for a review.

•Identifying relevant work.

•Assessing the quality of studies

•Summarizing the evidence and

•Interpreting the findings.

The question posed in this review is, “In what manner is upper extremity orthoses use beneficial to persons with ALS (PALS)?”

One manner in which Occupational Therapists (OTs) assist patients with activities of daily living (ADLs) and improving function is through orthotic fabrication, fitting, and training. The terminology of orthoses evolved from the term “splint”. Hand surgeons were adept at making orthoses from the 1880s continuing into the late 1950s [2]. Due to the polio epidemic and greater need for orthotic devices, occupational and physical therapists became involved in their fabrication. During World War II, surgeons, nurses, therapists, and medical corpsmen made orthotic devices. By the 1960s, with the onset of the polio vaccine, the need for orthoses decreased. Occupational therapists continued making orthoses while the other professionals reduced their involvement [2]. Orthoses used by PALS may be beneficial to support weak or ineffective muscles and joints, to reposition the hand in a functional position, prevent joint contracture and muscle shortening due to muscle imbalance, and prevent pain associated with resting position.

ALS, involving both the upper and lower motor neurons, is the most common adult motor neuron disease. Upper Motor Neuron (UMN) loss in the motor cortex may cause increased muscle tone. The lower motor neuron (LMN) loss in the brain stem and spinal cord results in muscle weakness with normal or decreased tendon reflexes. The average onset age is 55 to 60 years of age. The ratio of male to female is 1.5 to 1. After age 65-70 the ratio changes to 1 to 1 [3]. The average disease length until death or mechanical ventilation is 3 years from onset of muscle weakness [3]. It is important for OTs and other health care practitioners to be aware of interventions such as orthotic fitting and training that may enhance independence in activities of daily living and quality of life. Due to the rapid progression of the disease process, it is crucial to identify the individual’s needs and provide efficient interventions. The purpose of this study is to synthesize available information on upper extremity orthosis use in ALS.

Materials and Methods

The authors compiled articles gathered from CINAHL, Cochrane, EMBASE, Google Scholar, Medline and PubMed up to the acceptance date of this article. Key words used include amyotrophic lateral sclerosis, ALS, Lou Gehrig’s disease, MND, motor neuron disease, with hand therapy, occupational therapy, OT, physical therapy, physiotherapy, PT, with brace, orthoses, orthosis, orthotic, orthotic device, and splint. The authors included articles that met the following selection criteria: observational, qualitative, and quantitative studies that mention the use of upper extremity orthoses, English only, and a diagnosis of ALS/MND. The use of upper extremity orthoses was determined by the words brace, splint, orthotic device, orthosis, and orthoses concerning upper extremity rehabilitation. The authors eliminated abstracts, book chapters, posters, articles about individuals under the age of 18, and articles about powered orthotics. Fifty-five articles were initially selected and the bibliographies hand searched by two reviewers (MM and SS). If a consensus was not reached amongst the two reviewers (MM and SS), the third author (CI) would also read the article for inclusion and exclusion criteria and a discussion amongst the three authors would ensue until consensus was achieved. Twenty-two articles meeting the criteria are included in the synthesis. All three authors critically appraised each article using a standard format and provided a numerical score based on a 0-10 scale on their impression of the quality of the study based on the critical appraisal form. However, due to the lack of high-level studies, the authors chose to use all articles meeting the selection criteria regardless of the numerical value. The inter rater reliability on the forms was established.

Results

The results of the study yielded 5 case reports and 17 expert opinions (Table 1). In accordance with the 5 level pyramid proposed by Sackett [4,5], this translates to 5 level 4 and 17 level 5 studies that were critically appraised by the reviewers. Randomized controlled trials or controlled clinical trials were not discovered. During critical appraisal discussion, the reviewers chose to eliminate one article [6] from the synthesis, as it was a review of other appraised articles and did not offer new information.

Thirteen articles [7-19] advocate the use of volar wrist supports, with 5 articles specifying that the wrist be placed in 30-35 degrees of extension [9,13-16]. Twelve articles state wrist extension orthoses improve grip strength and/or efficiency therefore improving function [7,8,10,11,13-16,18,20] (Figures 1 and 2).

Eight of the reports advocate the use of resting hand orthoses that include the forearm and the hand [8,11,13,14,21-24] (Figure 3). Two case reports state that a resting hand orthosis may prevent intrinsic minus positioning, also referred to as clawing whereby the metacarpal phalangeal (MCP) joints fall into hyperextension and the Interphalangeal (IP) joints become fixed in flexion [11,21]. Conversely, McDonald and Skalsky and McDonald, recommend the MCPs be placed in neutral and the IPs be placed in flexion within the orthosis for night. The same authors promote full wrist and finger extension positioning for day use. They also emphasize that orthoses should not compromise function or sensation.

Ten of the reports recommend a thumb positioning orthosis to assist with functional pinch [7,11,12,14,16,17,19,21,25,26] (Figure 4). Campbell and Enderby recommend thumb adduction. Goldberg discusses a small thumb orthosis that holds the IP joint in extension. Tanaka, Saura, Houraiya, and Tanimura Sinaki and Sinaki and Mulder state that the thumb orthosis may increase independence in multiple tasks such as holding a cup, fastening buttons, writing, and pouring water. Tanaka, Saura, Houraiya and Tanimura published an algorithm for clinical decision-making. They recommend early use of a wrist cock-up splint, long thumb spica (Figure 5), short thumb spica, and simple web spacer. Other authors advocate the use of a thumb spica orthosis for opposition [11] and improved grasp in those with thumb abduction and extension weakness [14]. Combining the wrist and the thumb in a single orthotic to address both weak wrist extension as well as weak abduction may be useful in some cases [12,16,19,21] (Figure 5). Additionally, Lenox and Sinak discuss use of dynamic finger extension assist orthoses. Lenox also notes that a dorsal placement of the wrist orthosis may allow for increased finger motion.

In addition to suggestions on positioning for prevention of contractures and efficiency in grip and pinch strength, many of the reports address specific functional improvements with orthotic use. Seven of the articles mention functional gains with orthosis use [8,11,13,16,17,21,26]. Described functional improvements include using technology, holding objects including a hairbrush, walker, cup, and utensils and the ability to complete personal hygiene. In addition, case reports discuss improvement in sociability and participation in leisure activities such as crocheting [11].

Case reports also show relief of pain with orthoses [11,21]. In one of the reports, two case studies explicitly mention circumferential finger and figure of style orthoses, prefabricated dorsal wrist supports, and nighttime forearm resting hand orthoses for pain management and/or comfort [11] (Figures 3, 6-8).

This systematic review reveals that the published literature on the use of upper extremity orthosis with ALS/MND is anecdotal and based on expert opinion and case report. Most of the level 4 studies are single patient case studies. Furthermore, the outcomes that were used to measure success in the studies are not consistent or comparable. Based on these facts, there is not enough information to assess bias between studies. There is not enough data to compare the recommendations between studies mathematically to look for bias. To compare the studies mathematically, it would be necessary to compare studies with more than one patient that measure the same outcome.

Nenhum comentário:

Postar um comentário